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Introduction
Extended surfaces (or fins) play a major role in the design of heat exchange
devices within different fields of application, aimed at providing a heat transfer
enhancement effect through an increase in the total exchange area. Although
fins of uniform longitudinal profile are more commonly employed, owing to the
obvious advantages in manufacturing and installation, extended surfaces of
variable profiles are also of great practical interest, in connection with
optimized designs towards the minimization of the fin weight and consequent
reduction on the fin material utilization (Kern and Kraus, 1972; Snider and
Kraus, 1983).
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Aij = matrix coefficients defined by 
equation (9b)

Bij = matrix coefficients defined by 
equation (9c)

Bi = Biot number
b = coefficient of the variable thermal

conductivity, dimensionless 
C = aspect ratio
fi = transformed boundary condition
h = heat transfer coefficient
k = thermal conductivity
L = fin length
N = truncation order in eigenfunction

expansions
Ni = normalization integral
Q0 = dimensionless heat transfer rate
r = dimensionless thickness of the fin tip
T(x,y) = temperature distribution
Tb = fin base temperature
T∞ = surroundings temperature
x,X = dimensional and dimensionless

longitudinal co-ordinate

y,Y = dimensional and dimensionless
transversal co-ordinate

Greek symbols
α = local inclination of variable profile
β = coefficient of the variable thermal

conductivity, equation (3a)
∈ = relative error in the two-dimensional

solution
∈ 0 = thickness at the fin base
∈ f = thickness at the fin tip
∈ (X) = dimensionless variable profile
ψ = eigenfunctions of problem (3)
µi = eigenvalues of problem (3)
θ(X,Y) = dimensionless temperature distribution

Subscripts and superscripts
av = average temperature
i,j = order of related eigenquantities
– = transformed quantities
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The classical one-dimensional fin approximation has been extensively
recalled in the literature and explicit solutions are available for uniform
longitudinal profiles and a limited class of variable profiles (Kern and Kraus,
1972; Mikhailov and Ozisik, 1984; Snider and Kraus, 1983) which significantly
simplify the thermal analysis of finned devices.

A few contributions are available on the error estimation for these simplified
solutions in the case of fins with constant profile (Irey, 1968; Lau and Tan, 1973),
including a recently proposed modified one-dimensional formulation
(Aparecido and Cotta, 1990a), which reduces the error by an order of magnitude
in comparison with the classical fin formulation. However, for the more general
situation of a longitudinally variable profile, applicability limits for the few
simplified formulations are not clearly established, in part due to difficulties in
the accurate solution of the two dimensional heat conduction problem within an
irregular domain, not in general achievable through analytical methods
(Mikhailov and Ozisik, 1984), especially if the effect of variable thermal
conductivity is accounted for.

The present work brings a general hybrid numerical-analytical solution for
longitudinal fins with arbitrarily variable profile and temperature dependent
thermal conductivity, by handling the associated steady-state two-dimensional
heat conduction problem, and providing numerical results with full accuracy
control. The generalized integral transform technique (GITT) (Cotta, 1992) is
the basic tool behind such development, which has been gradually advanced
towards the error-controlled solution of different classes of problems in heat and
fluid flow, including various non-linear diffusion and convection-diffusion
problems (Cotta, 1992). The problem considered here is an extension to previous
developments on diffusion and convection within irregular geometries
(Aparecido and Cotta, 1990b, 1990c, 1992; Aparecido et al., 1989), including the
non-linear nature introduced through the variable thermal conductivity.

The basic steps in application of the integral transform method are the
choice of an appropriate auxiliary eigenvalue problem, which provides the basis
for the eigenfunction expansion, and subsequent integral transformation of the
original partial differential problem. An infinite system of ordinary differential
equations then results, which is truncated to an automatically controlled finite
order, for computational purposes, and numerically handled through boundary
value problem solvers with global error control and estimation schemes, readily
available in scientific subroutines libraries (IMSL Library, 1987). The explicit
inversion formula is then recalled to provide an analytic representation of the
original potential anywhere within the domain. This approach is illustrated
here for some typical variable profiles, and the excellent convergence behaviour
of the proposed expansions is demonstrated. The influence of the governing
parameters, Biot number and aspect ratio is also investigated and the errors
involved in the classical one-dimensional approximation are more clearly
identified.

It is also demonstrated that the integral transform solution of the related
two-dimensional problem can provide reliable approximate solutions, by
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retaining just the first term in the expansions for the average temperature. The
resulting expressions are as simple as those obtained through the classical one-
dimensional formulation, based on the solution of a single second order
ordinary differential equation, and the numerical results show a more consistent
behaviour, especially for increasing values of Biot number, aspect ratio and
degree of non-linearity

Analysis
We consider the two-dimensional heat conduction equation, for steady-state
and temperature-dependent thermal conductivity, written for a longitudinal fin
of variable profile, according to Figure 1. The temperature at the fin base is
assumed uniform and heat losses through the fin tip are disregarded. In
dimensionless form, the problem formulation is given as: 

(1a)

with boundary conditions

Figure 1.
Geometry and 

co-ordinate system for a
longitudinal fin with

variable profile
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(1b,c)

(1d,e)

where the various dimensionless groups are defined by

(2)

and α is the local inclination of the variable profile.
If the temperature-dependent thermal conductivity is considered in the usual

linear form

(3a)

in order to reduce the number of parameters to be studied; then, the
dimensionless function K(θ) becomes

(3b)

where,

(3c)

The application of Kirchoff’s transformation (Mikhailov and Ozisik, 1984), in
the non-linear problem (1) above is convenient to the analysis that follows.
Therefore, the following dependent variable is defined:

(4a)

or,

(4b)

and problem (1) is rewritten as

(5a)

with boundary conditions
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(5b,c)

(5d)

(5e)

It should be noted that the transformation does not eliminate the non-linear
nature of the original problem, represented in the source term of boundary
condition (5e), but simplifies the operators in the partial differential equation
(5a).

The application of the integral transform method (Cotta, 1992) to the present
problem involves a combination of previous developments on the solution of
diffusion problems within irregular domains (Aparecido and Cotta, 1990b,
1990c, 1992; Aparecido et al., 1989) and of non-linear diffusion and convection-
diffusion problems (Cotta, 1990; Cotta and Serfaty, 1991; Serfaty and Cotta,
1990, 1992). First, an appropriate auxiliary eigenvalue problem is selected,
which provides the basis for the eigenfunction expansion. Following the ideas
in such previous developments, the eigenvalue problem is taken as:

(6a)

with boundary conditions

(6b,c)

The longitudinal co-ordinate, X, appears as a parameter in the auxiliary
problem proposed for the transversal co-ordinate, Y, owing to the X-dependence
in the variable domain of the transversal co-ordinate. It should also be noted
that the boundary condition (6c) does not incorporate the X-component of the
normal derivative at the boundary Y = � ∈ (X), as well as the non-linear term,
which will be recovered after the integral transformation procedure. Problem (6)
allows definition of the integral transform pair below

(7a)

(7b)
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where the X-dependent normalization integral is computed from

(7c)

The eigenvalue problem (6) is solved in analytic form to yield:

(8a)

(8b)

(8c)

The integral transform approach proceeds by operating on equation (5a) with
the operator

to provide, after manipulations with the inverse formula (7b) and boundary
conditions:

(9a)

where,

(9b)

(9c)

The required boundary conditions to solve equation (9a) are obtained through
the same integral transformation of equations (5b,c), to yield
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(9d)

(9e)

where,

(9f)

For computational purposes, the infinite ODE system (9a,d,e) is truncated to a
sufficiently large finite order N, as discussed in the next section, and
numerically handled through well-established boundary value problem solvers
with automatic error control (IMSL Library, 1987). Once the transformed
potentials, � U

–
i′s, have been obtained for different positions in the X co-ordinate,

the inversion formula (7b) and equation (4b) are recalled to provide an analytical
expression for the dimensionless temperature field at any position Y of interest.
Also, from this analytical expression, the average temperature at any cross
section is readily obtained as:

(10)

Computational procedure
In the present hybrid approach, the numerical task is reduced to the solution of
a system of second order ordinary differential equations for the transformed
potentials, represented by equations (9). A number of algorithms for boundary
value problems are available that implement automatic error control through
adaptive mesh refinement schemes. One such algorithm is available in
subroutine DBVPFD of the IMSL library (1987), which controls the local
relative error in order to satisfy the user prescribed accuracy for the numerical
results. In addition, for highly non-linear problems, a continuation procedure is
available through parametrization of the non-linear terms. Therefore, since the
numerical results for the transformed potentials are obtained within prescribed
accuracy, one is left with the need to select the truncation order, N automatically,
in the eigenfunctions expansions, in order to devise a fully error-controlled
algorithm. Following the ideas in the computational procedures advanced in
Cotta (1992), for the case of elliptic problems such as the one under
consideration, the truncation order N is increased in fixed steps ∆N and a
testing scheme is employed at each position (X,Y) of interest, until convergence
has been achieved within the user requested accuracy. The simple testing
formula is written as:
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(11)

and N is increased until ∈ < Tol where Tol is the user prescribed accuracy
target. Also, for improved computational performance, the numerical results
obtained for the lower truncation order N serve as excellent initial guesses for
the next run with an increased truncation order (N + ∆N), speeding up
considerably the automatic error control scheme.

Results and discussion
Initially, the automatic error control feature of the integral transform approach
was reconfirmed through the case of a rectangular profile � ∈ (X) = const. and
constant thermal conductivity, which has a straightforward exact analytical
solution. As expected, the agreement was perfect to within the requested
relative error target (10–5). 

Next, the case of a trapezoidal profile with constant thermal conductivity
was considered, which is represented by the following equation

(12a)

where,

(12b,c)

The special case of a triangular fin (Aziz and Nguyen, 1992) is then recovered by
letting r→�0.

Table I illustrates the convergence behaviour of the proposed eigenfunction
expansion for the average temperature, equation (10), in the case of a
trapezoidal fin of constant thermal conductivity for different values of Biot
number, Bi, and aspect ratio, C. Also shown are the results from the classical
one-dimensional formulation for a trapezoidal fin (Chung et al., 1989). It is
clearly noticeable that the convergence rates are somehow improved for lower
values of Bi and higher values of C, since then the X-component of the boundary
normal derivative becomes less significant. As previously mentioned, this
component is not incorporated in the eigenvalue problem boundary condition,
and appears as a “source term” in the system for the transformed potential,
therefore affecting the convergence rates, as usual in eigenfunction expansion-
type approaches. However, the overall convergence behaviour is still quite
outstanding, at least in the range of the parameters, typical of extended
surfaces applications, considered here. When required, convergence
acceleration schemes can be recalled (ISML Library, 1987) either through
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N X = 0.000 X = 0.750 X = 1.875 X = 3.000

(C = 3.0; r = 10–3)
Bi = 1.00

1 (% error) 1.000 0.5144 (1.67) 0.1483 (3.97) 0.0185 (9.44)
4 1.000 0.5067 0.1431 0.0171
7 1.000 0.5062 0.1428 0.0170
10 1.000 0.5060 0.1427 0.0169
(*) (% error) 1.000 0.4726 (7.06) 0.1195 (19.4) 0.0134 (24.4)

Bi = 0.10
1 (% error) 1.0000 0.8465 (0.50) 0.6401 (1.30) 0.4711 (2.53)
4 1.0000 0.8427 0.6357 0.4615
7 1.0000 0.8424 0.6350 0.4606
10 1.0000 0.8423 0.6348 0.4603
(*) (% error) 1.0000 0.8407 (0.19) 0.6316 (0.51) 0.4571 (0.70)

Bi = 0.01
1 (% error) 1.0000 0.9783 (0.08) 0.9462 (0.19) 0.9151 (0.31)
4 1.0000 0.9776 0.9446 0.9126
7 1.0000 0.9776 0.9444 0.9123
10 1.0000 0.9775 0.9444 0.9122
(*) (% error) 1.0000 0.9775 (0.01) 0.9442 (0.02) 0.9120 (0.03)

Note: (*) One-dimensional solution (Chung et al., 1989)

N X = 0.000 X = 3.750 X = 6.250 X = 10.000

(C = 10; r = 10–3)
Bi = 1.00
1 (% error) 1.000 0.0267 (0.75) 0.0011 (0.00) 0.0000 (0.00)
4 1.000 0.0264 0.0011 0.0000
7 1.000 0.0265 0.0011 0.0000
10 1.000 0.0265 0.0011 0.0000
(*) (% error) 1.000 0.0169 (–36.62) 0.0005 (–51.01) 0.0000 (–89.94)

Bi = 0.10
1 (% error) 1.0000 0.3052 (0.25) 0.1143 (0.42) 0.0118 (0.94)
4 1.0000 0.3045 0.1138 0.0117
7 1.0000 0.3044 0.1138 0.0117
10 1.0000 0.3044 0.1138 0.0117
(*) (% error) 1.0000 0.3001 (–1.67) 0.1113 (–2.58) 0.0113 (–3.68)
Bi = 0.01
1 (% error) 1.0000 0.7588 (0.07) 0.6193 (0.12) 0.4408 (0.22)
4 1.0000 0.7583 0.6186 0.4408
7 1.0000 0.7583 0.6185 0.4399
10 1.0000 0.7583 0.6185 0.4398
(*) (% error) 1.0000 0.7580 (–0.04) 0.6182 (–0.05) 0.4395 (–0.07)

Note: (*) One-dimensional solution (Chung et al., 1989)

Table I.
Convergence of the 

eigenfunction expansion 
and comparison against 

the classical 
one-dimensional 

formulation
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filtering solutions or integral balance procedures, with additional analytical
involvement. The results presented for N = 10 in Table I are fully converged to
±1 in the last digit given, achieved through a user prescribed accuracy of 10–5

in the ODE’s solver. A typical run with N < 10 takes about 75 seconds of CPU
time on the IBM4381 mainframe computer, in the least favourable situation. 

Table I also presents the classical one-dimensional fin formulation (Serfaty
and Cotta, 1990) compared with the full two-dimensional formulation obtained
here. As expected, the error increases with the Biot number as the temperature
gradients in the transversal direction become more pronounced, exceeding the
value of 20 per cent for Bi = 1.0. The influence of the aspect ratio is less marked
but significant, from a comparison of the results for C = 3.0 and 10.0 at the same
value of Bi = 0.1. It is also of interest to observe the behaviour of the two-
dimensional solution with one single term in the eigenfunction expansion (N =
1). From the mathematical point of view, this solution is as simple as the
classical one-dimensional formulation, i.e. it is obtained essentially from the
solution of a second order ordinary differential equation. Nevertheless, the error
for this alternative approximate solution (N = 1) is better behaved than that for
the one-dimensional solution. This behaviour is even more noticeable for higher
values of Bi (= 1.0) and/or C (= 10.0), indicating that in the realm of applications
and for optimization studies of reduced cost, this approximate solution might
offer a more reliable alternative to the classical approach.

Such aspects of convergence rates and relative accuracy are also observable
in graphical form, through Figures 2 and 3, for the average temperature
distribution along the entire length of the fin. Figure 2 shows the convergence
behaviour for the case C = 3.0 and Bi = 0.1, demonstrating the practically
coincident results, to the graph scale, for N > 4. In addition, the results for one
single term in the expansion (N = 1) are in very good agreement with the one-
dimensional solution over the whole domain. Figure 3, again for C = 3.0, brings
the fully converged two-dimensional solutions for different Biot numbers 
(Bi = 0.01, 0.1 and 1.0), compared against the classical one-dimensional solution
(Chung et al., 1989), and demonstrates the increase of the error in the
approximate solution as the value of Biot increases.

Results were also obtained for a longitudinal fin with concave parabolic
profile, again for constant thermal conductivity, defined by the following
expression: 

(13)

In Mikhailov and Özisik (1984), the classical one-dimensional formulation was
employed in the solution of concave parabolic fins with negligible thickness at
the fin tip. In order to allow for critical comparisons with the present 
two-dimensional results, the computations were performed with � r = 10–5,
which was verified to represent adequately the situation of r→0, or negligible
heat transfer area at the tip. Numerical results are then presented in graphical
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Figure 3.
Comparison of the two-

dimensional and one-
dimensional

formulations for a
trapezoidal 

longitudinal fin
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form, to illustrate both the convergence rates and relative accuracy of the
approximate solutions in the case of a parabolic profile. Figure 4 shows the
convergence of the eigenfunction expansion for the average temperature along
the fin length, together with the approximate one-dimensional solution with 
C = 3.0 and Bi = 0.1. The same trends observed for the trapezoidal profile are
present in these comparisons for the parabolic geometry.

Also of interest is the evaluation of the dimensionless heat transfer rate at the
fin base. Figure 5 presents a comparison of the heat transfer rates, as a function
of aspect ratio C, and different values of Bi = 0.1,0.25 and 0.5, for a trapezoidal
fin with constant thermal conductivity (b = 0). The following definition was
employed:

(14a)

or,

(14b)

Besides the fully converged two-dimensional results, Figure 5 also shows the
classical one-dimensional solution and the integral transform solution for one-
single term (N = 1). Especially for the lower values of aspect ratio, the classical
one-dimensional formulation deviates from the two-dimensional solution
markedly, while the solution with N = 1 remains considerably accurate within
this range of the Biot number.

Attention is now directed to the solution of the non-linear situation due to a
temperature dependent thermal conductivity, for different values of the
governing coefficient, b. 

Table II illustrates the convergence rates of the eigenfunction expansion for
a trapezoidal fin with variable thermal conductivity, with Bi = 0.1, C = 10 and b
= 0.01, 0.1, 1.0. The average temperature results are in all cases fully converged
to four digits with N as low as 4. Also shown are the results for the one-
dimensional formulation, when the average value of the dimensionless thermal
conductivity is adopted (Kav = 1+b/2), in the temperature range of the problem.
Clearly, the results from the single-term eigenfunction expansion (N = 1), offer
an excellent approximation of the two-dimensional formulation, with
considerable accuracy improvement over the classical one-dimensional
approach, and even more noticeably for increasing degree of non-linearity.

Figure 6 presents a set of reference results for the non-linear case, again for
the trapezoidal fin with Bi = 0.1, C = 10 and r = 10–3, and indicates the expected
physical behaviour of the average temperature distributions as the non-linear
effect is magnified from the constant thermal conductivity case, b = 0.

In conclusion, the integral transform approach has been demonstrated to be
an attractive alternative to the purely numerical solution of non-linear heat
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Figure 4.
Convergence of the
integral transform

solution for a concave
parabolic fin
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Figure 6.
Influence of the thermal
conductivity coefficient
on the average
temperature profiles
(trapezoidal fin)
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N X = 0.000 X = 3.750 X = 6.250 X = 10.000

b = 1.00

1 (% error) 1.000 0.4295(0.12) 0.1884(0.32) 0.0219(0.92)
4 1.000 0.4290 0.1879 0.0218
7 1.000 0.4290 0.1878 0.0217
10 1.000 0.4290 0.1878 0.0217
(*) (% error) 1.000 0.3830(–10.6) 0.1758(–6.39) 0.0322(48.4)

b = 0.10
1(% error) 1.0000 0.3194(0.22) 0.1213(0.41) 0.0126(0.80)
4 1.0000 0.3187 0.1208 0.0125
7 1.0000 0.3187 0.1208 0.0125
10 1.0000 0.3187 0.1208 0.0125
(*) (% error) 1.0000 0.3099(–2.76) 0.1182(–2.15) 0.0130(4.00)

b = 0.01
1 (% error) 1.0000 0.3066(0.23) 0.1150(0.44) 0.0119(0.85)
4 1.0000 0.3059 0.1145 0.0118
7 1.0000 0.3059 0.1145 0.0118
10 1.0000 0.3059 0.1145 0.0118
(*) (% error) 1.0000 0.3011(–1.57) 0.1120(–2.18) 0.0115(–2.54)

Note: (*) One-dimensional solution for Kav

Table II.
Convergence of the 
eigenfunction expansion 
for a trapezoidal fin 
with variable thermal 
conductivity 
(Bi = 0.10; C = 10.0; 
r =10–3)
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conduction within extended surfaces of irregular geometry and variable
thermal conductivity, providing rapidly converging representations of the full
two-dimensional temperature field for different values of the governing
parameters. This hybrid numerical-analytical method handles, in a
straightforward manner, certain inherent difficulties associated with numerical
methods, such as the singularities present at the tip of a triangular fin
(Aparecido and Cotta, 1990b), and yields an automatic control of the global
error in the final solution, just as in a purely analytical solution. In addition, the
approximation based on one single term in the eigenfunction expansion was
observed to be more consistent with the full two-dimensional solution than the
classical one-dimensional fin solution, especially for higher Biot numbers and
aspect ratios, offering a potential usefulness for more involved situations,
particularly for non-linear situations, and keeping the same degree of
mathematical complexity as for the classical one-dimensional formulation. 
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